
ShipNaviSim: Data-Driven Simulation for Real-World
Maritime Navigation

Quang Anh Pham
Singapore Management University

Singapore
qapham@smu.edu.sg

Janaka Chathuranga
Brahmanage

Singapore Management University
Singapore

janakat.2022@phdcs.smu.edu.sg

Akshat Kumar
Singapore Management University

Singapore
akshatkumar@smu.edu.sg

ABSTRACT
Maritime traffic management in busy ports faces growing chal-
lenges due to increased vessel traffic and complex waterway in-
teractions. Strategies such as e-navigation by the International
Maritime Organization aim to enhance navigation safety through
traffic digitization. Maritime traffic simulation is essential for these
systems, offering a virtual environment to model, analyze, and op-
timize traffic flows. Unlike road traffic, there are few simulators for
maritime traffic, and they often lack realism and multi-ship inter-
actions. In this paper, we (a) present ShipNaviSim, a data-driven
maritime traffic simulator that utilizes a large-scale dataset over 2
years and electronic navigation charts to model vessel movements
in Singapore Strait, one of the busiest ports in the world; (b) imple-
ment and evaluate different imitation learning algorithms such as
behavior cloning to learn a policy that can accurately simulate real
world vessel movements and multi-ship interactions; (c) develop
vessel-specific metrics such as trajectory curvature, near miss rate,
to validate the learned policy’s alignment with human expert data.
Extensive testing shows that our learned agents can behave like
human experts, and thus can be used with the simulator for rec-
ommending routes for vessels in a hotspot region or generating
diverse traffic scenarios to benchmark navigation systems.

KEYWORDS
Maritime Traffic Simulation; Imitation Learning; Reinforcement
Learning
ACM Reference Format:
Quang Anh Pham, Janaka Chathuranga Brahmanage, and Akshat Kumar.
2025. ShipNaviSim: Data-Driven Simulation for Real-World Maritime Navi-
gation. In Proc. of the 24th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Maritime transportation plays a crucial role in global trade and
economics, with over 80% of world trade volume carried by sea
[37]. Therefore, how we manage the maritime traffic is very impor-
tant for operating global supply chains smoothly. This problem is
challenging especially in important ocean thoroughfares. For ex-
ample, Singapore strait (one of the busiest waterway in the world)

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

is becoming more congested due to increasing number of arriving
vessels over years [24, 27]. This leads to risks of collisions, which
threaten human lives, and raise environmental issues such as oil
spills [2].

To address vessel coordination for increasing navigation safety,
several strategies have been proposed recently [8, 23, 32]. A key
feature in such previous works is that they modelmacro-level vessel
coordination where the maritime traffic separation scheme (anal-
ogous to sea highways) is divided into multiple large zones (geo-
fenced sea space). Agents (vessels) only receive high-level guidance
regarding when to arrive in each zone and which zone to go to
next. Such macro simulation can simulate the traffic over longer
duration (∼5-10 hours) [6]. Our proposed work, in contrast, aims
to address micro-level simulation of the maritime traffic over short
time periods (10-20 minutes). This micro-level simulation is par-
ticularly important for port watch operators managing a port’s
vessel traffic information system (VTIS) for near term risks (10-20
minutes) [28]. There are several challenges in suchmicro-level simu-
lation such as capturing real vessel movement patterns (e.g., vessels
cannot turn sharply, speedup or slowdown quickly, or stop in the
water completely unlike land vehicles). Furthermore, multi-vessel
interactions capturing how other vessels in the nearby area affect
a vessel’s movement are critical to model and simulate. We next
describe major control structures in maritime traffic management.

Vessel traffic information system. Most busy ports such as
Singapore’s, Tokyo bay, model ships movements using the traffic
separation scheme (TSS) which are one-way sea lanes. These routes
are created for managing traffic and minimizing near misses when
vessels enter and exit the strait. Fig 1 illustrates TSS of Singapore
strait using its electronic navigation chart. The TSS is further di-
vided in to a set of zones, which are geo-fenced parts of the TSS
(shown as different polygons in figure 1).

Landmass

Planning Region

Landmass

Anchorage

Anchorage

Traffic Separation
Scheme(TSS)

Figure 1: Traffic separation scheme (TSS) of Singapore strait.
Red region is a hotspot region with high cross traffic.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

A port’s vessel traffic information system (VTIS) that is manned
by port watch operators [28]. Operators continuously monitor ves-
sel traffic around the clock using radars and other sensors, taking
action if a risky navigation situation is anticipated to develop in
the near future (e.g., within the next 10-20 minutes). Certain areas
within the TSS, like the red rectangle in Figure 1, are more prone to
frequent hotspots as vessels navigate between the port area (pink
zones) and TSS zones (blue zones). This crossing of vessels often
leads to hazardous situations and numerous near misses. Simulating
traffic accurately in this high cross-traffic region with multi-vessel
interactions is the focus of our work.

Our work learns imitation learning based policies for vessels
to accurately simulate the movement patterns found in real his-
torical data in the planning region. Such policies can be used in
several safety-focused settings. They can be used by port watch
operators to predict accurately how a vessel (or a group of vessels)
in a hotspot would move in the near future, which can help them
manage dangerous situations proactively. In a control, our learned
policy can be assigned to different vessels, while selected ego ves-
sel(s) are controlled using an RL agent, for example, to mitigate
hotspots.

Contributions. Our key contributions are:
• We first collect and process the real-world dataset of vessel
movements in a hotspot region of Singapore strait over 2
years to create ShipNaviSim, a data-driven simulator for
micro-level maritime navigation. ShipNaviSim provides a
flexible design for different feature settings such as log-play
(all agents moving as per historical data), self-play (some
agents controlled using a policy), and a graphical interface.

• We adapt several offline reinforcement learning and imita-
tion learning methods to run on ShipNaviSim. We design
relevant state features, action space specific to the maritime
setting that enable such algorithms to train policies that
align well with human experts (i.e., historical data), capture
multi-vessel interactions, and generalize well on the unseen
test data.

• We develop several vessel-specific metrics such as trajec-
tory curvature, near miss rate, to quantitatively validate the
learned policy’s alignment with human expert data.

• Extensive testing shows that our learned agents can behave
like human experts, and thus can be used with the simulator
for recommending routes for vessels in a hotspot region or
simulating diverse traffic scenarios.

2 RELATEDWORK
We next review some related works for vessel traffic management.
An expert system is introduced in [20] for the Turkish strait in-
cluding components like vessel traffic flow simulation models, hy-
drographic prediction model. Popular optimization methods such
Mixed Integer Linear Programming (MILP) and Constraint Program-
ming (CP) are also applied for optimizing the navigation efficiency
as well as satisfying safety constraints [3, 8]. Seeking the collision-
free paths of vessels can be considered as a multi-agent path finding
problem which is studied [34]. Reinforcement learning methods
[32, 33] are proposed for scaling the number of vessels and dealing
with the uncertainty in the environment. Modeling travel time of

vessels is presented in [6] usingWasserstein Generative Adversarial
Networks [4]. Despite such progress, the problem setting is still
limited to the macro-level management ignoring how vessels voy-
age inside a specific zone capturing historical movement patterns
and multi-ship interactions. There have been relatively few works
for modeling micro-level trajectory simulation. In [7], a generative
model based on LSTM [19] is learned to predict a set of future
trajectories for each vessel. However, this approach uses an MILP
to be solved at each time step to decide a vessel’s future course,
which is not scalable when large number of agents are involved
in a simulator. In contrast, our method learns a neural net based
policy, that once trained, is fast to execute.

Another relevant research direction is building simulators for
autonomous vehicles, especially self-driving cars (SCs). According
to [13], there are three types of agents that can be inside SC simula-
tors: rule-based agents such as the popular IDM model [36] which
reduce the vehicle speed or stops to prevent crashes, log-play agents
using the recorded human driving logs to replay, and learning-based
agents. Latest SCs simulators [17, 22] contain all these types of
agents or provide an interface to use rule-based and log-play agents
to train learning-based agents. Training methods are also classi-
fied into three categories: trajectory prediction [38, 41], open-loop
imitation learning (IL) like behavior cloning (BC) [5, 31] without re-
quiring environment interactions, and close-loop approaches such
as adversarial imitation learning [9, 10] or reinforcement learning
[13, 21].

Such SC simulators cannot be directly applied to the maritime
setting due to major differences in the movement patterns of cars
and ships. A vessel can not stop completely like cars when facing
collision risk; vessels cannot make sharp turns, and other movement
restrictions apply such as no sudden (de)acceleration. There are
other unique factors, such as course-over-ground (COG), heading
(the way a vessel is oriented), which need to be incorporated in the
maritime traffic simulation. As these maritime traffic constraints
cannot be described analytically easily, our goal is to learn such
movement patterns using imitation learning from the data.

In contrast to SCs, there are much fewer studies for developing
simulators for surface vehicles (ASVs) such as vessels [40]. Most of
them only contain rule-based agents and do not rely on real-world
data [26], or do not consider multi-vessel interactions [30]. Some
of them consider only small amount of data and the simulation
platform is not detailed [18]. Therefore, our ShipNaviSim provides
a high-fidelity benchmark for micro-level maritime navigation.

3 SHIPNAVISIM
3.1 Dataset for constructing scenarios
The maritime navigation data for large vessels are recorded in the
Automatic Identification System (AIS). We utilize a dataset from the
Singapore strait, which includes vessel trajectories with 59.6 million
data points (AIS records detailing vessel traffic) over a period of 2
years. The dataset consists of two types of data: static information
and trajectory information.

The static information includes the following fields: (a) Ship ID:
A unique identifier for the ship; (b) MMSI : The Maritime Mobile
Service Identity number of the vessel; (c) Length: The length of the

vessel; (d) Width: The width of the vessel; (e) Vessel Type: Specifies
whether the vessel is a cargo ship, oil tanker or any other.

We also have dynamic trajectory information for each vessel,
which includes the following data fields: (a) Timestamp: The times-
tamp of the record in UTC; (b) Status: The current status code of
the vessel, indicating whether it is underway using engine, an-
chored, aground, etc.; (c) Heading: The direction the vessel is facing;
(d) Course Over Ground: The actual direction in which the vessel
is moving over the ground; (e) Speed: The speed of the vessel in
nautical miles per hour; (f) Latitude: The latitude of the vessel; (g)
Longitude: The longitude of the vessel.

Selection of Planning Region. Our dataset covers the entire
Singapore Strait, as shown in Figure 1. The green areas represent
landmasses, while the gray areas indicate anchorages. Each small
polygon represents a sea zone. The Traffic Separation Scheme (TSS)
defines the sea lanes within these zones, specifying the directions
vessels should follow. The arrows indicate the TSS direction for
each zone. In most areas, the lanes are clearly separated, reduc-
ing the need for detailed planning. However, the area highlighted
by the dotted red rectangle experiences heavy cross-traffic, as it
serves as a crossing point within the TSS. Consequently, vessels
frequently navigate across traffic separation areas in this region to
avoid congestion and hotspots. Therefore, we select this area for
our simulator.

Pre-processing. In the pre-processing phase, we filter out out-
lier records and irrelevant information. We select only vessels that
are underway using their engines (i.e., they are not being towed).
Additionally, we include only tankers and cargo vessels based on
the vessel type field, excluding smaller vessels such as tugboats
and fishing boats; tankers and cargos are the riskier class as they
are much larger in size (200-300 meters) and have less navigation
agility than smaller vessels. Then we transform our dataset into
the following form which contain 𝑀 historical trajectories, 𝐷 =

⟨𝜏1, 𝜏2, . . . 𝜏𝑚, . . . , 𝜏𝑀 ⟩. Each trajectory𝜏𝑚 = ⟨𝑙𝑚1 , 𝑙𝑚2 , . . . , 𝑙𝑚𝑡 , . . . , 𝑙𝑚
𝑇
⟩

contains a sequence of data points, where 𝑇 is the length of the
trajectory. 𝑙𝑚𝑡 = (𝑥𝑚𝑡 , 𝑦𝑚𝑡 , 𝑣𝑚𝑡 , ℎ𝑚𝑡) represents the state of the ship
at time step 𝑡 and includes four features: 𝑥𝑚𝑡 and 𝑦𝑚𝑡 denote the
vessel’s location in a two-dimensional plane (the planning region
is treated as a 2D plane, ignoring Earth’s curvature due to the rela-
tively small area). 𝑣𝑚𝑡 denotes the vessel’s velocity relative to the
ground, and ℎ𝑚𝑡 indicates the vessel’s heading angle, representing
its orientation. All trajectories are linearly interpolated into 𝛿𝑇 (=
10 second) intervals for improved granularity.

3.2 Ego Agents and Log-play Agents
We implement our environment using a log-play setting, featur-
ing two types of agents: ego agents and log-play agents. The en-
vironment consists of 𝑛𝐸 ego agent and 𝑛𝐿 log-play agents, each
associated with a historical trajectory. The Figure 2 demonstrates a
scenario with one ego agent (red) and five log-play agents (blue).
The ego agents are controlled by the RL/imitation learning algo-
rithm, while the log-play agents passively replay their historical
trajectories within the environment. If an ego agent is assigned
the historical trajectory 𝜏𝑚 , it is initialized at the starting location
(𝑥𝑚0 , 𝑦𝑚0) with speed 𝑣𝑚0 and heading ℎ𝑚0 . Its objective is to reach

Figure 2: An example scenario from the environment show-
ing five log-play agents (in blue) and one ego agent (in red).
The dots behind the ships indicate the observable past states
of the trajectories, and the green dot marks the goal location
of the ego agent.

the endpoint 𝑔𝑚 = ⟨𝑥𝑚
𝑇
, 𝑦𝑚
𝑇
⟩ of the trajectory, defined as its goal.

During training, ego agents are expected to reach their goals, avoid
collisions with other vessels, and maintain minimal deviation from
their original trajectories. An environment episode concludes when
all ego agents have either reached their goals or exited the planning
region. For ease of exposition and to avoid notation clutter, the
following sections present the formulation in a single ego agent
setting (i.e., 𝑛𝐸 = 1). Once our imitation learning based policy is
trained, we can use it to control multiple ego agents; also shown
empirically.

3.3 Observation Space
The observation space is defined in the perspective of the ego agent.
At time step 𝑡 , the agent can observe the past 𝐻 (a hyperparameter,
we test for different 𝐻 values) steps of its own trajectory and the
past H-steps of closest 10 (a hyperparameter) nearby ships, and its
goal location. This captures multi-ship interactions.

3.4 Action Space
In real-world scenarios, a ship’s action space can be complex, in-
volving multiple factors related to its dynamics. To simplify this, we
model the ship’s behavior using a straightforward, 3-dimensional
continuous action space defined as 𝑎 = ⟨𝑑𝑥 , 𝑑𝑦, 𝑑ℎ⟩, where 𝑑𝑥 and
𝑑𝑦 are the changes in the 𝑥 and 𝑦 coordinates, and 𝑑ℎ is the change
in heading. This allows the next state of the ego vessel to be cal-
culated as 𝑙𝑡+1 = ⟨𝑥𝑡 + 𝑑𝑥 , 𝑦𝑡 + 𝑑𝑦, 𝑣𝑡+1, ℎ𝑡 + 𝑑ℎ⟩. The speed at the

next time step, 𝑣𝑡+1 =
√︃
𝑑2𝑥 + 𝑑2𝑦/𝛿𝑇 , is determined by dividing the

distance traveled by the time interval 𝛿𝑇 . This representation is
also known as delta action space [17] which can be used for any
kind of moving object.

3.5 Reward Function
We define the reward function as a sparse reward for the vessel.
The agent receives a reward of 0 for each step until it reaches the
goal. If the agent comes within a distance of 𝜓𝐺 from the goal,
it is considered to have reached it. Upon reaching the goal, the
agent receives a reward of 1. To limit the trajectory length, we also
truncate the episode at 1000 steps.

3.6 Evaluation Metrics

Course

Heading

wind and
sea effect

Drift

Figure 3: Illustration of drift

In this section, we present below metrics used for evaluating
navigation policies in ShipNaviSim.

Average Displacement Error (ADE). : In our work, we use the
Goal Conditioned ADE (GC-ADE) as defined in [13] to measure
the difference between the behavior of our agent and that of the
expert. Given an agent’s original historical trajectory 𝜏𝑚 of length
𝑇𝑚 and the actual trajectory generated by the learned policy, 𝜏𝑝 ,
with length 𝑇𝑝 , the GC-ADE quantifies the deviation of the current
trajectory from the original trajectory in the 2D plane:

GC-ADE =
1

min(𝑇𝑚,𝑇𝑝)

√√√√min(𝑇𝑚,𝑇𝑝)∑︁
𝑡=1

(𝑥𝑚𝑡 − 𝑥
𝑝
𝑡)2 + (𝑦𝑚𝑡 − 𝑦

𝑝
𝑡)2

Goal Rate. This metric indicates the percentage of times the ego
agent successfully reaches its goal. We set a threshold of𝜓𝐺 = 200
meters; if the agent comes within this radius of the final location, it
is considered a success. Compared to the size of tankers and cargos
(around 300 meters),𝜓𝐺 is relatively small.

NearMiss Rate. Domain experts consider that if a ship approaches
another vessel within 3 cable lengths (555 meters), it qualifies as
a near-miss scenario [8]. The near-miss rate represents the per-
centage of time-steps during which the ego agent encounters such
scenarios.

Drift. Drift illustrated in Figure 3 is defined as the angle differ-
ence between the course-over-ground (COG) and the heading of the
vessel. For a moving vessel, this value should typically be no more
than a few degrees. We compare this metric with expert values to
evaluate how closely the RL agent imitates expert behavior. Drift
indirectly captures the effect of ocean currents, wind, and other
weather condition on the vessel movement.

Curvature. Curvature measures the angle change in the vessel’s
course over ground at each time step, indicating the sharpness of
the turn[1]. It helps assess the maneuverability and ensures the
vessel’s behavior aligns with expected patterns, particularly when
comparing the RL agent’s performance to that of an expert.

4 IMITATION LEARNING FOR SHIPNAVISIM
In this section, we focus on how we adapt various imitation learn-
ing algorithms such as Behavior Cloning (BC) [35], ODICE [25],
and Inverse Soft-Q Learning (IQL) [14] for training agents in Ship-
NaviSim.

As mentioned in Section 3.1, we have the dataset 𝐷 contain-
ing 𝑀 historical trajectories which are sequences of ship states.
For each trajectory in 𝐷 , we can easily convert it into a sequence
of environment states in Section 3.3. Based on these sequences,
we can construct an environment expert demonstration D𝑒𝑥𝑝 =

{(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠′𝑖)}
|D𝑒𝑥𝑝 |
𝑖=1 where 𝑠𝑖 and 𝑠′𝑖 are two consecutive ShipNav-

iSim states, 𝑎𝑖 is the action taken in state 𝑠𝑖 for reaching 𝑠′𝑖 , and 𝑟𝑖
is a reward at 𝑠′

𝑖
obtained from the reward function (Section 3.5).

By using delta action space, 𝑎𝑖 in ShipNaviSim can be obtained
from only 𝑠𝑖 and its next state 𝑠′𝑖 . Because BC only uses state-action
information, we create another static dataset D𝐵𝐶

𝑒𝑥𝑝 consisting all
pairs (𝑠𝑖 , 𝑎𝑖) from D𝑒𝑥𝑝 .

Behavior Cloning. The goal of BC is to find a policy 𝜋 (𝑠, 𝑎) opti-
mizing the following function:

𝑚𝑎𝑥𝜋

∑︁
(𝑠,𝑎) ∈D𝐵𝐶

𝑒𝑥𝑝

log𝜋 (𝑠, 𝑎) (1)

This objective function of BC is quite popular in previous works
and is used in modern imitation learning implementation [16] in
which 𝜋 is represented by a Gaussian policy. Problem (1) is then
optimized by training the mean and covariance of 𝜋 . Another way
for modeling the policy in BC is using deterministic policy 𝜋 (𝑠)
which outputs the action directly. The objective function in this
case become:

𝑚𝑖𝑛𝜋

∑︁
(𝑠,𝑎) ∈D𝐵𝐶

𝑒𝑥𝑝

(𝜋 (𝑠) − 𝑎)2 (2)

Interestingly, this objective function is very close to optimizing
ADE, an important metric in our setting because we use the delta
action space. For example, assuming that for a pair (𝑠, 𝑎) ∈ D𝐵𝐶

𝑒𝑥𝑝

in which the expert state 𝑠 is equal to x-axis and y-axis positions
(𝑥,𝑦) and the expert action 𝑎 based on the delta action space will
be (𝑑𝑥 , 𝑑𝑦). The expert next state 𝑠′ = (𝑥 ′, 𝑦′) = 𝑠 + 𝑎 and 𝑎 will be
equal to 𝑠 − 𝑠′.

We denote 𝑠′𝜋 = (𝑥 ′𝜋 , 𝑦′𝜋) as the next state if action 𝜋 (𝑠) is taken
in state 𝑠 . Given the delta action space, 𝜋 (𝑠) = 𝑠′𝜋 − 𝑠 . Therefore in
this case equation (2) can be equivalent to:

𝑚𝑖𝑛𝜋

∑︁
(𝑠,𝑎) ∈D𝐵𝐶

𝑒𝑥𝑝

(𝜋 (𝑠) − 𝑎)2 (3)

=𝑚𝑖𝑛𝜋

∑︁
(𝑠,𝑎) ∈D𝐵𝐶

𝑒𝑥𝑝

(𝑠′𝜋 − 𝑠 − 𝑠′ + 𝑠)2 (4)

=𝑚𝑖𝑛𝜋

∑︁
(𝑠,𝑎) ∈D𝐵𝐶

𝑒𝑥𝑝

(𝑠′𝜋 − 𝑠′)2 (5)

=𝑚𝑖𝑛𝜋

∑︁
(𝑠,𝑎) ∈D𝐵𝐶

𝑒𝑥𝑝

[(𝑥 ′𝜋 − 𝑥 ′)2 + (𝑦′𝜋 − 𝑦′)2] (6)

This is clearly a form of ADE metric which leads to an observation
that in case of using delta action space for 2d coordinates, if we
optimize the equation 2, we also minimize the ADE. Thus instead of
using the common objective function (1), we choose deterministic
policy 𝜋 (𝑠) and equation (2) for learning BC in our experiments.

Policy network architecture. In our ShipNaviSim, the state space
have multiple types of inputs so using only the normal feed-forward
network was not enough based on our preliminary experiments.

Therefore, we adapt the late fusion architecture from self-driving
cars work [29] to design our policy network as in Figure 4. Specifi-
cally, we separate a state into 3 parts: goal features containing goal
location, ego features including only ego-agent information and
ships-interaction features consisting 10 nearby ships state. These
parts are processed by different extractors which are one or two
linear layers with activation functions. All the hidden features ob-
tained from three extractors will be inputted into the last layer
with activation function. Variants of this architecture are used for
ODICE and IQL to allow for stochastic policies.

Ego
features

Ships-interaction
featuresGoal features

Linear layer(s)
+Activation

Linear layer(s)
+Activation

Linear layer(s)
+Activation

Linear layer
+Activation

action

Figure 4: Policy Network architecture

ODICE and IQL. Because ODICE can be considered as both offline
reinforcement learning and imitation learning method, we run both
the two variants, which we name as ODICE-RL and ODICE-IL.
The ODICE-RL needs to ultilize the reward information due to
its offline RL setting. Based on our experiments, instead of using
sparse reward like in our reward function, changing zero reward
inside expert demonstration to -1 helped boost the performance of
ODICE-RL. For IQL, we used their off-the-shelf implementation.

5 EXPERIMENTS
Our navigation data consist the information about vessels move-
ment from mid 2017 to mid 2019 inside the hotspot planning region
shown in Figure 1; other larger planning regions in TSS are also
tested as shown in Figure 9. For a moving vessel, there is one AIS
record for each 1-2 minute interval, which provides a granular
picture of vessel movements in the Singapore strait.

The chosen planning region shown in figure 1 has a length of
6.68 km and a breadth of 7.77 km. We split these data into test
and training dataset. The test dataset with a total of 2948 trajecto-
ries contains mid-2019 data and the remainder is used for training
dataset with a total of 8437 trajectories.

Figure 5 illustrates the distribution of episode length in these
datasets. Most of vessels move inside the planning region for more
than 10 minutes which is equivalent to 600 steps in our simulation
(each time step in our simulation is 10 seconds). The maximum
trajectory length of training and test dataset can be up to 652 and
559, respectively. We use minari package [39] to create the offline
expert demonstrations from training dataset for offline RL and

0 50 10
0

15
0

25
0

55
9

Episode length

0.000

0.002

0.004

0.006

0.008

0.010

0.012

De
ns

ity

Distribution of episode length in Test dataset

0 50 10
0

15
0

25
0

65
2

Episode length

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

Distribution of episode length in Training dataset

Figure 5: Distribution of episode length in the dataset

IL methods. Our simulator, trained policies and demo videos are
publicly available can be found at our project website 1.

5.1 Simulation results
We train and test the BC with two settings, varying parameter 𝐻 ,
that controls how much information from the past time steps is
part of the observation space: 𝐻 = 0 and 𝐻 = 5. We call these two
BC settings as BC-0histL and BC-5histL. Figures 6 and 7 illustrate
the performance of 5 methods over 4 important metrics on training
and test dataset, respectively.

In terms of Goal Rate, three methods BC-5histL, BC-0histL and
ODICE-RL have good results which are always greater than 75%
on both training and test modes. Both BC-5histL and IQL have the
lowest near-miss rate of around 20% which is very close to the
expert performance (15%). However, IQL has a very large GC-ADE
value (over 10m on both datasets) which is more than about 20-40m
compared to other approaches. This indicates that it rarely follows
the expert trajectories. Furthermore, the average drift of IQL is
also the biggest across different methods and datasets. In the worst
case, this value can go up to 1 radian (about 57 degrees) which
is highly infeasible in real-world scenarios. For ODICE methods,
ODICE-RL is clearly better than ODICE-IL on all metrics with the
help of reward augmentation as described in the previous section.

Overall, these results show that BC-5histL shows good, robust
performance across different metrics in both training and testing
modes. This is because the BC loss function with deterministic
policy is similar to the GC-ADE metric, as discussed in section 4.
Notice that GC-ADE achieved by BC-5histL of around 60m is fairly
small given that we consider only large tankers and cargos with
their length around 300 meters.
1https://shipnavisim.github.io

https://shipnavisim.github.io

BC
-5h

isIL

BC
-0h

isIL

ODICE-R
L

ODICE-I
L IQL

0

20

40

60

80

100

Go
al

 R
at

e
(%

)

Goal Rate by Method (Train)

Ex
pe

rt

BC
-5h

isIL

BC
-0h

isIL

ODICE-R
L

ODICE-I
L IQL

0

10

20

30

40

50

60

70

Ne
ar

 M
iss

 R
at

e
(%

)

Near Miss by Method (Train)

BC
-5h

isIL

BC
-0h

isIL

ODICE-R
L

ODICE-I
L IQL

0

20

40

60

80

100

120

140

160

GC
-A

DE

GC-ADE by Method (Train)

Ex
pe

rt

BC
-5h

isIL

BC
-0h

isIL

ODICE-R
L

ODICE-I
L IQL

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
g

Dr
ift

Avg Drift by Method (Train)

Figure 6: Comparisons on training data

BC
-5h

isIL

BC
-0h

isIL

ODICE-R
L

ODICE-I
L IQL

0

20

40

60

80

100

Go
al

 R
at

e
(%

)

Goal Rate by Method (Test)

Ex
pe

rt

BC
-5h

isIL

BC
-0h

isIL

ODICE-R
L

ODICE-I
L IQL

0

10

20

30

40

50

60

70

Ne
ar

 M
iss

 R
at

e
(%

)
Near Miss by Method (Test)

BC
-5h

isIL

BC
-0h

isIL

ODICE-R
L

ODICE-I
L IQL

0

20

40

60

80

100

120

140

160

GC
-A

DE

GC-ADE by Method (Test)

Ex
pe

rt

BC
-5h

isIL

BC
-0h

isIL

ODICE-R
L

ODICE-I
L IQL

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
g

Dr
ift

Avg Drift by Method (Test)

Figure 7: Comparisons on test data

Table 1: Additional kinematic metrics

Method Data type mincurvature maxcurvature minacceleration maxacceleration mindrift maxdrift
Expert Train -0.29 0.39 -2.00 2.35 -0.41 0.34

Test -0.24 0.32 -1.02 1.25 -0.47 0.34
BC-5histL Train -0.12 0.14 -0.98 0.78 -0.49 0.52

Test -0.07 0.15 -1.02 0.73 -0.57 0.61
BC-0histL Train -0.15 0.27 -1.05 0.84 -0.72 0.55

Test -0.19 0.21 -0.53 0.39 -1.00 0.68
ODICE-RL Train -0.25 0.11 -0.40 0.57 -0.92 1.1

Test -0.19 0.11 -0.35 0.51 -0.99 1.15
ODICE-IL Train 0.00 0.21 -0.61 0.50 -1.90 0.53

Test 0.00 0.22 -0.51 0.40 -2.34 0.55
IQL Train -12.42 2.25 -4.94 4.73 -3.14 3.14

Test -11.47 1.29 -5.02 4.96 -3.14 3.14

We further evaluate all agents more on some other kinematic
metrics as shown in Table 1. Most methods have the reasonable
bounding values of curvature except ODICE-IL and IQL. The min-
imum curvature value of ODICE-IL is zero which means that it
always turns on one side of the vessel, which is not a reasonable
behavior. In terms of IQL, its curvature bound values are very large,
thus its turning angle is really sharp in the worst case, that is un-
realistic for vessels. For acceleration and drift, IQL still has outlier
values compared to other approaches and expert. The outstanding
performance of BC-5histL clearly shows when we look at drift met-
rics. The worst drift angles of other methods are always bigger than
0.9 radian (about 51 degrees) while this value for BC-5hist is only
about 0.61 radian (about 35 degrees).

Drift and weather effects. We also note AIS data does implicitly
capture the effect of weather conditions on the ship movements

Table 2: Drift distribution comparison

Method Wasserstein Distance
Train Test

BC-5histL 0.193 0.224
BC-0histL 0.238 0.276

(see [12]). The drift (defined on Section 3.6) captures the effect of
weather, sea currents on vessel movements. In calm waters without
any external forces, a vessel’s heading and course-over-ground
(COG) would be the same. However, this is not the case in our
setting; external forces causes a vessel’s heading to be different from
COG, resulting in non-zero drift (see Figure 6, Table 1). As our IL
algorithms capture both COG and heading, they capture the vessel

0 3 5 7 10
History Length

0

10

20

30

40

50

60

70

80

Go
al

 R
at

e
(%

)

Goal Rate vs History Length

0 3 5 7 10
History Length

0

10

20

30

40

50

60

70

80

90

GC
-A

DE

GC-ADE vs History Length

0 3 5 7 10
History Length

0

5

10

15

20

25

30

Ne
ar

-m
iss

 R
at

e
(%

)

Near-miss Rate vs History Length

Figure 8: The impact of the observable past states (𝐻)

movements caused by external factors. In Table 2, we also compare
the distribution of drift (measured in radian) in historical data
and the data generated by BC. For interpretation, the Wasserstein
distance (optimal transport) of 0.19 radian (about 10.8 degrees, BC-
5histL-Train) is a small value for a larger vessel. This indicates our
BC algorithm can capture external forces.

5.2 Ablations on the nearby vessels and
observable history features

Table 3: Impact of Nearby Ship Information

Method Goal Rate ↑ Near Miss Rate ↓ ADE ↓
BC-0hist 74.86 24.92 ± 29.50 55.14 ± 41.48
BC-0hist-Drop 69.54 25.59 ± 30.77 79.94 ± 50.99
BC-5hist 80.81 18.87 ± 26.47 58.51 ± 35.39
BC-5hist-Drop 9.33 34.61 ± 33.21 84.67 ± 46.57

Impact of Nearby Ship Features. We train the Behavior Cloning
(BC) policywith andwithout nearby vessel features to evaluate their
impact. In Table 3, we present the results for BC-0hist and BC-5hist,
which incorporate nearby ship information with history lengths
of 0 and 5, respectively. We show results after removing nearby
ship information, denoted as BC-0hist-Drop and BC-5hist-Drop. The
results clearly indicate that removing nearby vessel information
leads to a significant decline in performance. In the 0-history length
setting, this results in a 5% reduction in goal rate, a 1-2% increase
in near-miss rate, and an increase in displacement error of approx-
imately 25 meters. In the 5-history length setting, the impact is
even more pronounced, with a 70% reduction in goal rate, a 16%
increase in near-miss rate, and an increase in ADE of 26 meters. In
summary, we conclude that nearby ship information is crucial to
learn an effective policy. Thus, our BC-based policies are able to
effectively capture multi-vessel interactions.

Effect of Observing Past States of the Trajectory. To evaluate the
impact of observing past states, we train our model with varying
𝐻 values ranging from 0 to 10, representing the number of past
states visible to the agent, as discussed in Section 3.3. The results,
shown in Figure 8, include the Goal Rate, Near-miss Rate, and ADE
metrics. We focus on presenting BC in this ablation, as it consis-
tently demonstrates the best performance overall, as discussed in

Section 5.1. The model with 𝐻 = 5 achieves the highest goal rate
of 81%, along with a significantly lower near-miss rate and ADE.
In contrast, the model with 𝐻 = 1 shows the lowest goal rate at
approximately 32%. This indicates a clear effect of allowing the
agent to observe past trajectory steps.

5.3 Comparison with trajectory prediction

Table 4: Results of comparing between BC and trajectory
prediction method

Method Data type Goal Rate ↑ Near Miss Rate ↓ ADE ↓

Expert Train 100.00 15.14 0.00
Test 100.00 15.37 0.00

BC-5histL Train 80.81 18.87 58.51
Test 76.83 20.62 60.75

Autobot Train 27.85 14.96 169.13
Test 24.42 15.09 170.17

We want to note that trajectory prediction methods focus on
short-term motion forecasting while our work deals with long-term
motion planning (vessel trajectories can be more than 30 minutes
long in our setting). They are two distinct problems with differ-
ent purposes [11]. Although we can apply trajectory forecasting
approach on the planning task by using predicted trajectory as
historical features to re-plan after some environment steps, its per-
formance is still worse than BC in autonomous driving scenario
[17]. We also conduct experiments to show the similar phenomenon
in our maritime setting where we use Autobot [15] method as the
trajectory prediction baseline. As shown in the Table 4, Autobot
has worse performance in terms of ADE and goal rate metrics but
surprisingly has lower near-miss rate even than expert. This is
due to the early truncation of Autobot’s trajectories in which the
episode is ended because the ego agent goes outside the map thus
avoiding most of close-quarter situations.

5.4 Self-play results
In the previous sections, we train and evaluate agents in single-
agent setting. However, maritime traffic management involves mul-
tiple agents. We also want more agents to be controlled by learned
polices for generating diverse scenarios. Therefore, we evaluate our
best agent BC-5histL on multi-agent setting in this section.

Table 5: Self Play Results (50% agents controlled by BC)

Method Dataset Goal Rate ↑ ADE ↓
Mean Min Max

BC-5histL Train 63.4 68.92 ± 41.03 35.84 ± 37.85 106.07 ± 65.26
Test 58.92 66.98 ± 38.84 34.32 ± 35.45 104.75 ± 63.11

Table 6: Self Play Results (ego agent perspective)

Method Dataset Goal Rate ↑ ADE ↓ Near Miss Rate ↓
Log-play Self-play Log-play Self-play Log-play Self-play

BC-5histL Train 80.81 72.32 58.51 ± 35.39 98.41 ± 67.50 18.87 ± 26.47 16.65 ± 27.05
Test 76.83 69.64 60.75 ± 36.81 96.88 ± 66.16 20.62 ± 27.88 17.79 ± 27.65

For each ego agent scenario at the starting time step, we choose
randomly 50% of agents inside its view to be controlled by the
trained BC policy. If a self-play agent reaches the goal or moves out
the planning region, it will be removed from the current view. The
episode stops when there are no controlled agents in the planning
area or the total number of simulation steps reach its limit. Table
5 show the results in multi-agent setting. For computing the goal
rate, we adopt a stricter definition than the single ego agent setting.
Only if all the BC-controlled agents reach their respective goals,
we count it as goal achieved.

For each episode, we compute the min and max ade values over
controlled agents. The column Min and Max in Table 5 show the
average of these values across all episodes. We can see that the
goal rates in both training and test datasets in case of multi agent
are higher than 55%. The mean of ADE increases a little, about
10-15m, compared to single-agent results, which shows that vessels
movements are still close to their historical trajectories. In the best
case, the average of min ADE values is under 40 showing BC policy
can still control some agents quite well.

We further investigate the effect of self-play scenarios on the
performance of ego agent. Table 6 shows the goal rate, ade and near
miss rate of ego agents for two settings:

• When surrounding agents of the ego agent are controlled by
the log data replay (‘Log-play’)

• When 50% surrounding agents are controlled by the BC
policy (‘self-play’)

We can clearly see that the performance in both log-play and self-
play settings are roughly similar for various metrics. Even though
self-play setting is more challenging setting, BC policy still manages
to learn well from the historical data, and on the test dataset also,
its performance is good, on-par with log-play.

5.5 Results on larger planning areas
We extend ShipNaviSim results to two larger planning regions:
Region 1 (9.89 km long and 5.31 km wide) and Region 2 (12.52
km long and 9.01 km wide) as illustrated in Figure 9. The results
in Table 7 show that BC still have stable performance on larger
regions. The goal rate drops slightly but remains in a good range
of 63-71%. The near-miss rate stays consistent between 19-21%,
and the ADE remains relatively low at 59-72 meters. These results
clearly demonstrate the effectiveness and flexibility of our approach
when applying to other regions.

Table 7: Results on other planning regions

Method Data type Goal Rate ↑ Near Miss Rate ↓ ADE ↓

Region 1
Expert Train 100 14.15 0.00

Test 100 12.09 0.00
BC-5histL Train 71.86 21.04 59.75

Test 65.78 21.11 65.75
Region 2

Expert Train 100 11.43 0.00
Test 100 11.04 0.00

BC-5histL Train 64.89 19.10 67.71
Test 63.29 19.68 72.72

SMU Classification: Restricted

Landmass

Original planning
region

Landmass

Anchorage

Anchorage

Traffic Separation
Scheme(TSS)

Region 1

Region 2

Figure 9: Larger planning regions (purple rectangles)

6 CONCLUSION
We developed ShipNaviSim, a high fidelity simulator based on real
world maritime traffic data for simulating vessel traffic in busy port
areas. Given the importance of maritime traffic to the world trade,
and high environmental and human risks of accidents, developing
such accurate simulators is crucial to test and validate maritime
traffic control strategies. We integrated several imitation learning
based methods with our simulator, and showed that the learned
policy aligns well with the historical data.We also developed several
maritime traffic related metrics to validate the behavior of learned
policies. Our results also highlighted the importance of considering
multi-vessel interactions to learn accurate movement patterns.

ACKNOWLEDGMENTS
This research/project is supported by the National Research Foun-
dation, Singapore and DSO National Laboratories under the AI
Singapore Programme (AISG Award No: AISG2- RP-2020-017).

REFERENCES
[1] 2024. Curvature. https://en.wikipedia.org/w/index.php?title=Curvature&oldid=

1251369919 Page Version ID: 1251369919.
[2] 2024. Oil tankers collision off Singapore Strait spotlight perils of dark fleet

ships. https://www.scmp.com/news/asia/southeast-asia/article/3271072/blazing-
oil-tankers-singapore-strait-spotlight-perils-dark-fleet-ships

[3] Lucas Agussurja, Akshat Kumar, and Hoong Chuin Lau. 2018. Resource-
constrained scheduling for maritime traffic management. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 32.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein genera-
tive adversarial networks. In International conference on machine learning. PMLR,
214–223.

[5] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. 2018. Chauffeurnet: Learn-
ing to drive by imitating the best and synthesizing the worst. arXiv preprint
arXiv:1812.03079 (2018).

[6] Chaithanya Basrur, Arambam James Singh, Arunesh Sinha, and Akshat Ku-
mar. 2021. Ship-GAN: Generative Modeling Based Maritime Traffic Simula-
tor. In Proceedings of the 20th International Conference on Autonomous Agents
and MultiAgent Systems (Virtual Event, United Kingdom) (AAMAS ’21). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, 1755–1757.

[7] Chaithanya Basrur, Arambam James Singh, Arunesh Sinha, Akshat Kumar, and
T. K. Satish Kumar. 2022. Trajectory Optimization for Safe Navigation inMaritime
Traffic Using Historical Data. In 28th International Conference on Principles and
Practice of Constraint Programming (CP 2022) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 235), Christine Solnon (Ed.). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 5:1–5:17. https://doi.org/10.4230/
LIPIcs.CP.2022.5

[8] Saumya Bhatnagar, Akshat Kumar, and Hoong Chuin Lau. 2019. Decision Making
for Improving Maritime Traffic Safety Using Constraint Programming. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19. International Joint Conferences on Artificial Intelligence Organization,
5794–5800. https://doi.org/10.24963/ijcai.2019/803

[9] Raunak P Bhattacharyya, Derek J Phillips, Blake Wulfe, Jeremy Morton, Alex
Kuefler, and Mykel J Kochenderfer. 2018. Multi-agent imitation learning for
driving simulation. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 1534–1539.

[10] Eli Bronstein, Mark Palatucci, Dominik Notz, Brandyn White, Alex Kuefler,
Yiren Lu, Supratik Paul, Payam Nikdel, Paul Mougin, Hongge Chen, et al. 2022.
Hierarchical model-based imitation learning for planning in autonomous driving.
In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 8652–8659.

[11] Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong, Eric Wolff, Alex
Lang, Luke Fletcher, Oscar Beijbom, and Sammy Omari. 2021. nuplan: A closed-
loop ml-based planning benchmark for autonomous vehicles. arXiv preprint
arXiv:2106.11810 (2021).

[12] Konstantinos Christodoulou, Herodotos Herodotou, and Michalis P Michaelides.
2022. Estimation of sea surface current velocities using AIS data. In 2022 23rd IEEE
International Conference on Mobile Data Management (MDM). IEEE, 407–412.

[13] Daphne Cornelisse and Eugene Vinitsky. 2024. Human-compatible driving part-
ners through data-regularized self-play reinforcement learning. arXiv preprint
arXiv:2403.19648 (2024).

[14] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano
Ermon. 2021. Iq-learn: Inverse soft-q learning for imitation. Advances in Neural
Information Processing Systems 34 (2021), 4028–4039.

[15] Roger Girgis, Florian Golemo, Felipe Codevilla, Martin Weiss, Jim Aldon D’Souza,
Samira Ebrahimi Kahou, Felix Heide, and Christopher Pal. 2022. Latent Variable
Sequential Set Transformers for Joint Multi-Agent Motion Prediction. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
Dup_dDqkZC5

[16] Adam Gleave, Mohammad Taufeeque, Juan Rocamonde, Erik Jenner, Steven H
Wang, Sam Toyer, Maximilian Ernestus, Nora Belrose, Scott Emmons, and Stuart
Russell. 2022. imitation: Clean imitation learning implementations. arXiv preprint
arXiv:2211.11972 (2022).

[17] Cole Gulino, Justin Fu, Wenjie Luo, George Tucker, Eli Bronstein, Yiren Lu, Jean
Harb, Xinlei Pan, Yan Wang, Xiangyu Chen, et al. 2024. Waymax: An accelerated,
data-driven simulator for large-scale autonomous driving research. Advances in
Neural Information Processing Systems 36 (2024).

[18] Siyu Guo, Xiuguo Zhang, Yisong Zheng, and Yiquan Du. 2020. An autonomous
path planning model for unmanned ships based on deep reinforcement learning.
Sensors 20, 2 (2020), 426.

[19] S Hochreiter. 1997. Long Short-term Memory. Neural Computation MIT-Press
(1997).

[20] AN Ince and E Topuz. 2004. Modelling and simulation for safe and efficient
navigation in narrow waterways. The Journal of Navigation 57, 1 (2004), 53–71.

[21] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-
Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. 2019. Learning to
drive in a day. In 2019 international conference on robotics and automation (ICRA).
IEEE, 8248–8254.

[22] Quanyi Li, Zhenghao Mark Peng, Lan Feng, Zhizheng Liu, Chenda Duan, Wenjie
Mo, and Bolei Zhou. 2024. Scenarionet: Open-source platform for large-scale traf-
fic scenario simulation and modeling. Advances in neural information processing
systems 36 (2024).

[23] Jiajing Ling, Arambam James Singh, Nguyen Duc Thien, and Akshat Kumar.
2022. Constrained multiagent reinforcement learning for large agent population.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 183–199.

[24] Esther Loi. 2023. Singapore port hits all-time high of 3 billion
gross tons in vessel arrivals in 2023. The Straits Times (12 2023).
https://www.straitstimes.com/singapore/transport/singapore-port-nets-
all-time-high-of-3b-gross-tons-in-vessel-arrivals-in-2023

[25] Liyuan Mao, Haoran Xu, Weinan Zhang, and Xianyuan Zhan. 2024. ODICE:
Revealing the Mystery of Distribution Correction Estimation via Orthogonal-
gradient Update. In The Twelfth International Conference on Learning Representa-
tions. https://openreview.net/forum?id=L8UNn7Llt4

[26] Eivind Meyer, Haakon Robinson, Adil Rasheed, and Omer San. 2020. Taming
an autonomous surface vehicle for path following and collision avoidance using
deep reinforcement learning. IEEE Access 8 (2020), 41466–41481.

[27] Faris Mokhtar. 2017. Busy shipping lane’s narrow passageway hard for vessels
to navigate. https://www.todayonline.com/singapore/busy-shipping-lanes-
narrow-passageway-hard-vessels-navigate

[28] MPA. 2021. Vessel Traffic Information System. https://www.mpa.gov.sg/web/
portal/home/port-of-singapore/operations/vessel-traffic-information-system-
vtis.

[29] Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth Goel, Khaled S Re-
faat, and Benjamin Sapp. 2023. Wayformer: Motion forecasting via simple &
efficient attention networks. In 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2980–2987.

[30] Shinkyu Park, Michal Cap, Javier Alonso-Mora, Carlo Ratti, and Daniela Rus.
2020. Social trajectory planning for urban autonomous surface vessels. IEEE
Transactions on Robotics 37, 2 (2020), 452–465.

[31] Dean A Pomerleau. 1988. Alvinn: An autonomous land vehicle in a neural
network. Advances in neural information processing systems 1 (1988).

[32] Arambam James Singh, Akshat Kumar, and Hoong Chuin Lau. 2020. Hierarchi-
cal Multiagent Reinforcement Learning for Maritime Traffic Management. In
Proceedings of the 19th International Conference on Autonomous Agents and Multi-
Agent Systems (Auckland, New Zealand) (AAMAS ’20). International Foundation
for Autonomous Agents and Multiagent Systems, 1278–1286.

[33] Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin
Lau. 2019. Multiagent decision making for maritime traffic management. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 6171–6178.

[34] Teck-Hou Teng, Hoong Chuin Lau, and Akshat Kumar. 2017. Coordinating
Vessel Traffic to Improve Safety and Efficiency. In Proceedings of the 16th Confer-
ence on Autonomous Agents and MultiAgent Systems (AAMAS ’17). International
Foundation for Autonomous Agents and Multiagent Systems, 141–149.

[35] Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Behavioral Cloning from
Observation. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence. International Joint Conferences on Artificial Intelligence
Organization, Stockholm, Sweden, 4950–4957. https://doi.org/10.24963/ijcai.
2018/687

[36] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested traffic
states in empirical observations and microscopic simulations. Physical review E
62, 2 (2000), 1805.

[37] UNCTAD. 2023. Review of maritime transport | UNCTAD. Retrieved October
12, 2024 from https://unctad.org/topic/transport-and-trade-logistics/review-of-
maritime-transport

[38] Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivastava, Khaled S Refaat,
Nigamaa Nayakanti, Andre Cornman, Kan Chen, Bertrand Douillard, Chi Pang
Lam, Dragomir Anguelov, et al. 2022. Multipath++: Efficient information fu-
sion and trajectory aggregation for behavior prediction. In 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 7814–7821.

[39] Omar G. Younis, Rodrigo Perez-Vicente, John U. Balis, Will Dudley, Alex Davey,
and Jordan K Terry. 2024. Minari. https://doi.org/10.5281/zenodo.13767625

[40] Yang Zhou, Winnie Daamen, Tiedo Vellinga, and Serge Hoogendoorn. 2019.
Review of maritime traffic models from vessel behavior modeling perspective.
Transportation Research Part C: Emerging Technologies 105 (2019), 323–345.

[41] Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai Huang. 2023. Query-
centric trajectory prediction. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 17863–17873.

https://en.wikipedia.org/w/index.php?title=Curvature&oldid=1251369919
https://en.wikipedia.org/w/index.php?title=Curvature&oldid=1251369919
https://www.scmp.com/news/asia/southeast-asia/article/3271072/blazing-oil-tankers-singapore-strait-spotlight-perils-dark-fleet-ships
https://www.scmp.com/news/asia/southeast-asia/article/3271072/blazing-oil-tankers-singapore-strait-spotlight-perils-dark-fleet-ships
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://doi.org/10.24963/ijcai.2019/803
https://openreview.net/forum?id=Dup_dDqkZC5
https://openreview.net/forum?id=Dup_dDqkZC5
https://www.straitstimes.com/singapore/transport/singapore-port-nets-all-time-high-of-3b-gross-tons-in-vessel-arrivals-in-2023
https://www.straitstimes.com/singapore/transport/singapore-port-nets-all-time-high-of-3b-gross-tons-in-vessel-arrivals-in-2023
https://openreview.net/forum?id=L8UNn7Llt4
https://www.todayonline.com/singapore/busy-shipping-lanes-narrow-passageway-hard-vessels-navigate
https://www.todayonline.com/singapore/busy-shipping-lanes-narrow-passageway-hard-vessels-navigate
https://www.mpa.gov.sg/web/portal/home/port-of-singapore/operations/vessel-traffic-information-system-vtis
https://www.mpa.gov.sg/web/portal/home/port-of-singapore/operations/vessel-traffic-information-system-vtis
https://www.mpa.gov.sg/web/portal/home/port-of-singapore/operations/vessel-traffic-information-system-vtis
https://doi.org/10.24963/ijcai.2018/687
https://doi.org/10.24963/ijcai.2018/687
https://unctad.org/topic/transport-and-trade-logistics/review-of-maritime-transport
https://unctad.org/topic/transport-and-trade-logistics/review-of-maritime-transport
https://doi.org/10.5281/zenodo.13767625

	Abstract
	1 Introduction
	2 Related Work
	3 ShipNaviSim
	3.1 Dataset for constructing scenarios
	3.2 Ego Agents and Log-play Agents
	3.3 Observation Space
	3.4 Action Space
	3.5 Reward Function
	3.6 Evaluation Metrics

	4 Imitation learning for ShipNaviSim
	5 Experiments
	5.1 Simulation results
	5.2 Ablations on the nearby vessels and observable history features
	5.3 Comparison with trajectory prediction
	5.4 Self-play results
	5.5 Results on larger planning areas

	6 Conclusion
	Acknowledgments
	References

